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NOMENCLATURE Greek symbols
k, thermal conductivity [W/m KJ; o thermal diffusivity; (k/pc,}[m?/s]:
T, temperature [K]; £, fluid density [kg/m*];
R, sphere radius [m]; 7, relaxation time R%/x [s].
Ty, interfacial temperature [K]:
F, =rT; .
A(s),  Laplace transform of A(t); Subscripts
3T | 1, related to sphere;
q/AnR?, heat flux, = — - [W/m?]. 2, related to medium.
r=R

1. HEAT-TRANSFER EQUATIONS AND BOUNDARY CONDITIONS

WE ARE interested in knowing the heat fluxes and temperature profiles for the conduction heat-transfer problem of having
a sphere initially at temperature T; inside a medium initially at temperature T;. The heat-transfer equations governing

this process are:

Ty 19 T, 1
s =0 ;éﬁ[rT‘(r’ ], a =0 Tl [ra(r, 0]
Here the subscript one pertains to the sphere and two to the infinite medium. At the interface R one has
0Ty T,
Ty=T, k—=k —.
S P
The initial state of the system is that at t = 0, T = T};, Tz = Ty;. Introducing the variable F by the relation
F=rT-T)

so that T = T;+ F/r, we find that F obeys the one-dimensional heat-transfer equation
oF, 0%F, OF, _ 0%F,
a e Ta %
as well as the initial condition that at t = 0, F; = F, = 0. Introducing the Laplace transform F(r, s) via
F(r,s) = f e " F(r,r)dt
0

one has that F(r, s) satisfies in each substance

sF—a—=0.

P
The solution of equation (5) satisfying the boundary conditions is

ky(Ty;— Ty )R sinh[(s/o,)' 2] [(s72)"% +1]
s[ki(st1)*? cosh(st)*? + ky(st2) 2 sinh(st,) "2 + (k, —k,) sinh(st)" %]
Falrs) = ky R(Ty; — To)) exp[ —(s/a2)"'*(r — R)] [(s7,)"/* cosh(st,}*/* —sinh(s7,)"/?]
P s{ky [(st) ™ cosh(sty) "2 —sinh(st,) 2] + k sinh(st,) 2 [(572) 2 + 1]

Fl("ﬁ) =

where 1, = R?/a;.
At large s one has
kaR(Ti=Ta , 1p  ka[(30)' +(22)" 7]
e K2 e Y/ 7SR
5T 262+ ko —ky) |

ki R(Ty;i— To;
Filrs) ~ —(s—lzi)clﬁl)[-(s/otz)“z(r—R)][(n)”2 -

Fir9) = {exp[ —(s/a)! (R —r)] = exp[ =(s/o1) (R + 1]

ka[(r1)'? +(12)'%]
Z(5)'2 + (k2 — k1)
I = ky(2)!? + k(1)

(1

2

G

4

{®

(6a)
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2. SPECIAL CASE OF 1DENTICAL THERMAL PROPERTIES

When k| = k,, xy = %, (that is the same liquid in 1 and 2), one gets a drastic simplification and has that equation (0}
becomes

. Ti—Tu 5 ) 5 2 :
F,= (: TI—»R[H-(W U exp[ — (sia )R =11 —exp —(s/2)) 2R+
s -
(7
R(T ;T3
F, :”("L"T »ZJ[ expl —{s/x V2 r— R} +exp — (i) SR+ )]
R(Tyi— T 2 .
+ 5. (ls—)lf;f— expl —{s/x)' 2(r+ R —exp[ —(sia ) e~ RV

Using standard tables of Laplace transforms we obtain for all r

(Tu—Ta) | r+R [ r—R |
T="T,— &5\[(’3{0(2( [ )* erfc(\z(';{j?'i } l

Rl[n

]z,) :( ‘ i ‘ o
- - — — Yy — ittt
A (,\z ) texp[ —4(r+ R for)] —exp{ —Hr—R)*jur ] (&)

where t = R?/a and erfc(x) = | —erf(x) is the complementary error function. The interfacial heat flux is given by

git) —k . L i -
4—1}&‘2 SRR (Toi— Ty () 2 lexpl—1i0 — 1]+ Hz/0) 2 [T+ expl—1/0)] ). 19

3. GENERAL CASE
For the general case we can use the Laplace transform inversion formula to obtain a real integral representation for
Fi(r, 1) and F,(r. 1) by contour distortion. We have

P
Firoiy = — e F(r,s)ds. i1
2ri .-

i

Since F; and F, have poles at s = 0 and a branch point at s = 0 we use the standard contour deformation to obtain
| sl i A
F(r,() = Res Fr.s = 0y 4+~ ‘ e Fir.syds + *J et F(r, s)ds. AR}
i}, 2ni Jo
AB cn

Setting s = pe®, we have 0 = 7 along CD and 0 = —x along AB. Thus ()% = i(p)""? on CD and —i{p)' * on AB. W¢
find {48 = — (fcp)* so that
. 1 r .
Fr.1) = Res F{r.s = 0)+—Im ' eM F(r, 5)ds. (123
n !
“en
Letting p = u?a;/R? and using T = T;+ F/r we obtain
2 § ., R [ 5 ) . Cfur
Ty = T+ — ki ko Tos— Tid oy 2)V? — . duexp( —u1/t;)(ucosu—sin u)sm(ﬂ)
n ol R
x [o ke sin? u+a; {ky (weosu —sinu) +kysinul* 1T 403

2 R du B .
Ty = Toi+— k(o) = (Ty;— Ty 1 - exp{— u?1ity) 1 cos u —sin u)
n r Joou

k(o) 2 cos usmu+(x7)‘ $iny [’\ﬂ“CO@[l*SlUM)%J7\”114!
% " >

— I e i)
"o k2t sin? U+0h[1\ (ucosu—sinu)+kysinul®
where 7 = (a,/02) 2u(r—Ryjr], t; = R0y, T2 = R/,
Thus we have
{ 2 T ; expl — u1/7,) (1 cos u —sin u)? N
L(L — 2 k3ks (,,,; ‘,)( L 2)! du 4”‘,‘*,,7(,_3,( e g (15
4nR~ n R [11 Gutsin? u) + o {k(ucosu—sinuy+ ky sinul”
For t » t one has
T= Ty = Tot (T T —‘»LV(—) ’ s
1= da =1y PYpRATE: 1 i X .
Thus everything eventually becomes the initial temperature of the medium. One also hasfor ¢ » <
gty 1 s kqtog)'? Q_j.’ln)(ﬂ v .
R 2 e R A1)
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The short time behavior of the solution is obtained from the inverse Laplace transform of equation 6(a). Thus for
t € 1, we have

k»R i R+r \

T = Tl,-+—%}T(T2,-——Tl,-){(rz)”z[erfc<2( )1/2) erfc(z(al t)1/z/>J
ki[(x)'"? +(2)'2][ R—r B(R-1) 2 R-r 12
+ 5 erfe 2(a1t)1/2)——exp g+ ool 5+ 0 >

R+ B(R+7) R+r o
_erfc<m)%3) + expt(—alw + ﬁzt] erfc(—(—w +B(0) /Z)J} (18)

kiR R
T, = TzH'E“(Tu sz){(n)l/z erfC( t)”z)

ka[(x)'? + (12)/%] r—R “Bir—R 2 r—R 12 }
- 5 [“k(z(azr)m,)_“pt( I o ] <(“2f)1'2+ﬂ © ) } -

where § = (ky =k )/Z, T = ky(01)"2 + ky(12)"2.
At r = R the leading short time behavior is given by
k(1) P Thi+kal22) 2 Ty + 2k ko [(x1)"2 +(22)"2]
p> 2

T /t) = u/m (o — Tha). (20)

4. LIQUID SODIUM INSIDE URANIUM DIOXIDE

In this section we examine the temperature profile inside the sphere as a function of 7, = R%/x; as well as considering
the heat flux at the interface. We choose the case of liquid sodium at 700K entrained in UO, at 3000K since that case
is interesting in hypothetical fast breeder reactor postulated accidents, and it is interesting to compare these results with
those of the plane interface case [1]. Using the thermophysical properties stated in [1] and a sphere radius of 10™*m,
we find the heat flux as shown in Fig. 1. We notice that by 107, the heat flux becomes insignificant. The approximate
expression for T, equation (20), was found to be 5% low at 0.37;, 109, low at 7,, and stayed within 10% of the exact
result up to 57,. The large time behavior of T, equation (16), was extremely accurate (1%) after ¢t = 507,.

In Fig. 2 we show the temperature profile in the sphere at selected times between ¢ = 0,017, and r = 107, as obtained
from equation 34.
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