
Int. d. Heat Mass 7i'ansfer. Vol. 00, pp. 991-993. Pergamon Press 1977. Printed in Great Britain 

S H O R T E R  C O M M U N I C A T I O N S  

HEAT T R A N S F E R  F R O M  A SPHERE TO A N  I N F I N I T E  M E D I U M *  

FRED COOPER 
Theoretical Division, Los Alamos Scientific Laboratory, 

University of California, Los Alamos, New Mexico, U.S.A. 

(Received 27 August 1976 and in revised form 4 November 1976) 

NOMENCLATURE 

k, thermal conductivity [W/m K];  
T, temperature [K];  
R, sphere radius [m];  
T~s , interracial temperature [ K ] ;  
F, = rT; 
/l(s), Laplace transform of A(t); 

kOT[ 
q/4nR 2, heat flux, = - ~ r  i,=u [W/m2]. 

Greek symbols 
ct, thermal diffusivity; (k/pc v) [m2/s] ; 
p, fluid density [kg/m 3]; 
z, relaxation time R2/o~ Is]. 

Subscripts 

1, related to sphere; 
2, related to medium. 

1. HEAT-TRANSFER EQUATIONS AND BOt'NDARY CONDITIONS 

WE ARE interested in knowing the heat fluxes and temperature profiles for the conduction heat-transfer problem of having 
a sphere initially at temperature TI~ inside a medium initially at temperature T2~. The heat-transfer equations governing 
this process are: 

t?T1 1 t? 2 (?T2 1 02 
O~-=Oqr~irz[rTl(r,t)], ~-=Ot2r~r2[rT2(r , t )  ]. (I) 

Here.the subscript one pertains to the sphere and two to the infinite medium. At the interface R one has 

6~T1 ~r2 
T1 = T2, kl ~ r  = k2 0-~- (2) 

The initial state of the system is that at t = 0, TI = T1. Tz = T2~. Introducing the variable F by the relation 

F = r ( T -  Ti) (3) 

so that T = T~ + F/r, we find that F obeys the one-dimensional heat-transfer equation 

0F1 ~2F1 c~F2 c~2F2 
Ot o:1 Or 2 , c3~-= ~2 ~r ~ ,  (4) 

as well as the initial condition that at t = 0, F~ = Fz = 0. Introducing the Laplace t.ransform/Vl(r , s) via 

fo P(r, s) = e - s, F(r, t) dt 

one has that F(r, s) satisfies in each substance 

Oh e 
s t -  ~ ~ = 0. (5) 

The solution of equation (5) satisfying the boundary conditions is 

Fl(rs) = k2(T21- Tll)R sinh [(s/el)U2r] [(sz2) 1,'2 + 1] 
s[kl(szl) 1/2 cosh(szl) t/2 +kz(sz2) U2 sinh(srl)  1/2 +(k2 -Iq)sinh(srl l  1/2] 

P2(r, s) = k~ R ( T , -  T2i)exp[-(s/c~2)l/2(r- R)] [(szl) U2 cosh (szl) U2 -sinh(szl)  ~/2 ] (6) 

s{k~ [(szl) Uz cosh(szO 1/2 - sinh(szl) 1/2] +k2 sinh(szO1/2[(sz2) U2 + 1]I 

where zi = R:/ei. 
At large s one has 

k2 R ( T 2 i -  rli)[- "1/2 
E(s) 1/2 + (k2 -k~)  J [exp [ - ( s / c q ) ' / 2 ( R -  r)] - exp [ - ( s / ~ ,  )'"-'(R + r)]] 

L- 

/V2(rs ) _ k~ R(T l l -  T21) exp [ - - (s /a2) l /2(r -  R)][(zO 1/2 k2 [(zl)1~ + (r2) 1/2] ] (6a) 
s~ E(s) "2 + (k2 -kl)  ] 

= k~(rl)~/2 +k2(z2) 1/2. 

* Work performed under the auspices of the U.S. Energy Research and Development Administration. 
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2. SPECIAL ("~%g OF II ) I (NTI( 'AL TI t FRMAL PROPERTIES 

When kt = k 2 ,  3{1 - 3{2 (that is the same liquid in 1 and 2), one gets a drastic simplification and has that equat ion !6i 
becomes 

(T2i-  T.)  
/71 - 2s R [ l + ( s r ) - l z ] " e x p [ - 1 " : 3 { 1 ) ' 2 ( R  - "j! - cxpE- (v ' : x ' l ~  2 iR+") ]  ' 

/72 = ~[11, ' -{z l )  {expE_(s/3{, t l ,e(r_Ri] + e x p [  -(,,3{~1' -'IR + r(]', 
> 

R ( T u -  "/20 {exp[ -(s,'3{, 1' '2 ( r+  R)] - exp [ -(s,.-z, I ~ :~l" - Rl! '~. 
+ 2~-,~r ' ' ~ , l !  

Using s tandard tables of Laplace t ransforms we obtain for all r 

(Tl i -T2i)  ~ ( r + R  ~ ' r - R  
T =  r 2 i -  . . . . . . . .  l e r l c l - - ~ , - i - e r f c ( - -  ?- t I 

2 L \2(3{0 " /  \2(3{0 2 i i  

R i T l i -  7 2 i ) [  i ' l  
{ e x p [ -  ¼lr + R)2 / (3{ t ) ] -exp[ -  ¼(r- RI2/~t l l + 

where r = R2/a and erfc{xl = 1 - e r f l x )  is the complementary  error  function. The interfacial heat flux is given by 

q(t) - k  
4rc/~2 = ~I.~R I - G , -  1],) ~ t..r)~ S [ e x p ( - > t l -  1] + ½(w't)"2[1 + e x p { - z / t ) ] ~ .  tg i  

3. GENERAL CASE 

For  the general case we can use the Laplace t ransform inversion formula to obtain a real integral representat ion for 
Fdr,  t) and F2(r, t) by contour  distortion. We have 

L i*'/ F(r, l~ - e '~' fi(r, .s)ds. i I( i 

Since/7~ and/72 have poles at s = 0 and a branch point at .~ = 0 we use the s tandard con tour  deformation to obtain  

F(r, t l = R e s F ( r , s = O ) + ~ n l . , t  , e"Flr ,  s ) d s + 2 n i J o  e"/7(r,  slds. 

t B  CD 

(1[} 

Setting s = p c ' ,  we have 0 = ~z along CD and 0 -- - re along AB. Thus  (S} 112 = i(p}L2 on CD and .-i{t,)' : on AB. g ' c  
find 5a~ = - (j'cv)* so that 

1 i, ~ F ( r , t ) = R e ' ~ P ( r . s = O l + ~ h n  e~'/7(r, q d.s. i!2i 

('D 

Letting p = ue3{t,/g 2 and using T = 71 ÷ F / r  we obtain 

2 _ io 'duexp(_u2t . . r l ) (UCOSU_sinu)s in(U~)  T1 = T;i + - k  l k2lT21- Tu)(Oq 3{,) 1'2 R 
- r t  - r ~ R ,  

× [cq l<~u:s in . :u+3{2{k l (ucosu-s inu)+kzs in l ' , :~  ~ ~13f 

? R ~' du , 
T2 = T2i4-Zkl(°:2)l'2 (g2 i -T l i )  l ti e x p ( - u - I  r ' ) l u c ° s u - s i n u l  

k2 i3{~ )~'2 cos 7u sin u + (,~2)1 sin 7 [k~{u cos u -  sin ul + kz sin u! 
! 14 

× -i:q kTu~- sin 2 u +  =~-,~ [k--[(u-cos u---s-in~ui +/~, sinu ]2 

where ;' = (3{L,'3{2) - u [ l r -  R)/r], rl = R2:3{1, r2 = R- ~2. 

Thus  we have 

q(t) 
4nR 2 

For  t > ~ one has 

"~ (%i--  Tli) ~ "( , e xp ( -u2 t / z t t (  u c ° s u - s i n u ) 2  
- k{ < .  - (3{, ~ i  ~,2 d~, [ ; i i~ i .w~i~  -~ u3+ ~,7,ql d, cos--~TSin u ~ ;  k2 sin .', 21  n R e 

l k {:~ I'TI\ 3'2 
T i = T 2 = ~ , +  ~ (T - T 2 0 - : 7 7 7 i 7 2 / : }  - 

6{Trj 2 ' R 2 {X2I ' ~, l / 

Thus  everything eventually becomes the initial temperature  of the medium. One  also has for t >> z 

q ( 0  1 , k l { ~ l t  1'2 {W2i-Tlij["cl ~1 ~2 

a,~e:  = - 12t~t ' -~`' k e i L i  ~> - R - / - ,  ] 

(J5~ 

(16t 

i )-~t 
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FIG. 1. Heat flux q [W/m 2] vs t/rl. 
4nR2(4.182 x 10 4) 
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FIG. 2. Temperature profile inside sphere of sodium initially 
at 700K. 

The short time behavior of the solution is obtained from the inverse Laplace transform of equation 6(a). Thus for 
t ~ z~ we have 

T1 = Tl i+~-r  (r2i-- 

- R - r  k I [(Zl)1/2-~ ('~2) l/2 ] ~ ~ ] [-erfc f ~  ~ 1- f l (R-r ,  R - r  

R + r  -fl(R+r) 2 R + r  i 2 -erfc(~)+expI~,~-+atlerfc(~+~(t)/)] t (18) 

k l R  ( 1/: / r - R  
T2 = T2,+~-r  (T1,-T2i)~(zO e r f c ~ )  

r - R  - f l ( r -R)  2 r - R  1/2 

where 1~ = (k2 -k l ) / '£ ,  E = kl(zl)  1/2 + k2(z2) 1/2. 
At r = R the leading short time behavior is given by 

kl(zl)l /2T"+k2(~)l/2T21 ~ -2kl kE[(T1)U2 +(z2)l/E]-(t/n)l/2(r21-Tll). (20) 
T~s(t) 2 2 ~ 

4. LIQUID SODIUM INSIDE U R A N I U M  DIOXIDE 

In this section we examine the temperature profile inside the sphere as a function of zl = R2/cq as well as considering 
the heat flux at the interface. We choose the case of liquid sodium at 700K entrained in UO2 at 3000K since that case 
is interesting in hypothetical fast breeder reactor postulated accidents, and it is interesting to compare these results with 
those of the plane interface case [1]. Using the thermophysical properties stated in [ l ]  and a sphere radius of 10-4m,  
we find the heat flux as shown in Fig. 1. We notice that by 10z I the heat flux becomes insignificant. The approximate 
expression for T~j-, equation (20), was found to be 5% low at 0.3Zl, 10% low at zt, and stayed within 10% of the exact 
result up to 5zl. The large time behavior of T~ l ,  equation (16), was extremely accurate (1%) after t = 50zt. 

In Fig. 2 we show the temperature profile in the sphere at selected times between t = 0.01z~ and t = 10zl, as obtained 
from equation 34. 
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